martes, 8 de julio de 2014

Gusanos de agua dulce revelan una proteína clave en la regeneración de tejidos

Un equipo de investigadores han demostrado el papel fundamental de la proteína JNK durante la regeneración de tejidos en organismos adultos.

 
Fuente:Servicio de Información y Noticias Científicas SINCunos gusanos planos de agua dulce que se han convertido en un modelo clave para el estudio de la regeneración y de las células madre; puesto que pueden regenerar cualquier parte de su cuerpo, incluso la cabeza, en dos semanas. Esta sorprendente plasticidad se basa en la presencia de una población de células madre pluripotentes (neoblastos), capaces de convertirse en cualquier tipo de células del organismo. Sin embargo, los mecanismos que desencadenan esta capacidad de regeneración son todavía bastante desconocidos.
El equipo de la UB se ha centrado en la función de la proteína JNK, una cinasa muy conservada en la escala evolutiva de los metazoos. Hasta ahora, se sabía que esta proteína estaba implicada en el control de la proliferación y la muerte celular, pero se conocía muy poco sobre su papel durante la regeneración de tejidos y órganos.
En el nuevo estudio se han bloqueado las funciones de la proteína mediante la técnica de interferencia de ARN para poder comprobar las diferencias en el organismo cuando la JNK está activada o desactivada.



Tal como explica Teresa Adell, una de las autoras del artículo, "en cualquier organismo, después de una herida o una amputación, hace falta que se active la proliferación celular para generar células nuevas, y también la muerte celular para que los tejidos nuevos y los antiguos queden perfectamente integrados".
El equipo ha descubierto que la JNK es esencial para controlar los dos procesos a la vez: la velocidad del ciclo celular de las células madre y también la activación de la muerte celular. "Creemos que el hecho de que una única proteína controle los dos mecanismos simultáneamente es clave para que las dos respuestas estén coordinadas, y la regeneración se desarrolle de forma controlada", dice Adell.
Tejidos in vitro
La JNK es fundamental también en la capacidad de las planarias de adaptar su medida en función de la alimentación. Estos gusanos se hacen más pequeños en ausencia de nutrientes, y vuelven a la medida original cuando se restablece la alimentación habitual.
Los científicos han empleado planarias, unos gusanos que pueden regenerar cualquier parte de su cuerpo, incluso la cabeza, como modelo de investigación
El estudio muestra que la JNK actúa como un centro de operaciones para mantener las proporciones del cuerpo y remodelar la medida de los órganos. "En respuesta a la pérdida de tejido, la JNK modula la expresión de los genes, induce la eliminación de las células innecesarias y controla la división celular necesaria de las células madre", indica la investigadora Maria Almuedo, otra de las autoras.
Esta capacidad de regular a la vez la muerte celular y la división de las células madre abre nuevas vías en el campo de la medicina regenerativa, donde uno de los grandes retos es generar y mantener in vitro tejidos y órganos que después puedan ser trasplantados a los pacientes. Estos tejidos se crean a partir de células madre pluripotentes humanas, y una de las dificultades del proceso consiste en conseguir que sean funcionales y proporcionados. La capacidad regenerativa y de remodelaje continuo de las planarias es un referente que puede permitir resolver estas limitaciones.
"Nuestro estudio demuestra que la JNK es un factor clave a la hora de mantener un equilibrio entre la proliferación y la muerte celular en un organismo basado en células madre pluripotentes como las planarias», subraya Emili Saló, catedrático y jefe del Departamento de Genética de la UB. "Por lo tanto —concluye—, la modulación de la actividad de la JNK será un factor más que habrá que tener en cuenta a la hora de optimizar los cultivos de células madre y para el mantenimiento de los órganos funcionales in vitro".
Desregulación y cáncer
La pérdida de la función de la JNK favorece la desregulación de la proliferación y la muerte celular, un proceso que en el campo del cáncer se ha relacionado con la generación de procesos tumorales. El nuevo estudio matiza esta vinculación entre desregulación de la JNK y cáncer y lo enmarca en un proceso más complejo.
"Nuestros resultados demuestran que la inhibición de la actividad de la JNK en las planarias no induce tumores. Este resultado indicaría que el papel de la JNK como agente carcinogénico no sería de forma única y suficiente, sino que los tumores se originan por la alteración de múltiples vías de señalización a la vez», explica Teresa Adell. El estudio de la relación de la JNK con otras vías de señalización en los procesos tumorales es una de las futuras vías de investigación de este grupo de investigación de la UB.
El trabajo ha sido coordinado por Emili Saló y Teresa Adell, profesores del Departamento de Genética de la UB, y es parte de la tesis doctoral de la investigadora Maria Almuedo Castillo, de la UB. También han participado en la investigación expertos del Instituto Max Planck de Biomedicina Molecular (Münster) y de la Universidad de Münster (Alemania).

sábado, 5 de julio de 2014

Investigadores de la UV descubren una proteína que permite a las células madre del cerebro generar nuevas neuronas

Un equipo de investigadores de la Unidad de Neurobiología Molecular de la Universitat de València (UV), dirigidos por la catedrática de Biología Celular Isabel Fariñas, acaba de publicar en la revista Nature Cell Biology los resultados de un trabajo que podría arrojar luz sobre el programa normal de activación de las células madre del cerebro adulto para producir nuevas neuronas a lo largo de toda la vida.


Un equipo de investigadores de la Unidad de Neurobiología Molecular de la Universitat de València (UV), dirigidos por la catedrática de Biología Celular Isabel Fariñas, acaba de publicar en la revista Nature Cell Biology los resultados de un trabajo que podría arrojar luz sobre el programa normal de activación de las células madre del cerebro adulto para producir nuevas neuronas a lo largo de toda la vida.

Según han explicado desde la institución académica en un comunicado, los tejidos se renuevan constantemente gracias a las células madre, que generan nuevas células para sustituir a las células viejas. Estas células madre se localizan en ubicaciones muy concretas dentro de los tejidos, que se conocen como microambientes o nichos y en los que las células madre se relacionan con otros tipos de células. Aunque la regulación de estas interacciones celulares es poco conocida en general, las células madre del cerebro adulto están adheridas a otras células de su nicho por una proteína de adhesión celular llamada N-cadherin, que actúa como lazo. En este estudio de investigadores de la UV, realizado en ratones, se ha demostrado que existe una proteína, llamada MT5-MMP, que es capaz de cortar este lazo liberando así a las células madre del control del nicho. "El trabajo nos permite conocer mejor las relaciones entre las células madre y su entorno e identifica dianas moleculares sobre las que poder actuar para potenciar la activación de estas células durante la renovación de los tejidos o en procesos regenerativos", ha afirmado Eva Porlan, primera autora del trabajo.

Por otro lado, es "importante" tener en cuenta que la activación descontrolada de las células madre "puede dar lugar a tumores", ha indicado Fariñas. Por ello, este trabajo "está vinculado a otros aspectos de nuestra investigación orientados a la comprensión de cómo se controla la activación normal de las células madre, a fin de encontrar soluciones terapéuticas a la formación de tumores causados por la pérdida de dicho control", ha añadido. Con todo ello, la neurobiología desarrollada en la UV aporta, una vez más, nuevos datos al estudio y avance de la medicina regenerativa, un campo de la ciencia que busca soluciones terapéuticas basadas en las células madre para procesos degenerativos, como puedan ser el Alzheimer o el Parkinson. Esta investigación sale publicada en el número de julio de la revista científica Nature Cell Biology y, en ella, el equipo de la Universitat ha contado con la colaboración de los equipos de Antonella Consiglio del Institut de Biomedicina de la Universitat de Barcelona (IBUB), de Carlos López-Otín de la Universidad de Oviedo, y de Robert Kypta del CIC bioGUNE de Bilbao. El equipo de Fariñas pertenece a la Unidad de Neurobiología Molecular del Departamento de Biología Celular y Parasitología y a la ERI de Biotecnología y Biomedicina de la Universitat, al Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) y a la RETIC de Terapia Celular del Instituto de Salud Carlos III, y es grupo Prometeo de excelencia de la Generalitat Valenciana.


Reprograman células intestinales para producir insulina

La manipulación de un único gen para convertir células gastrointestinales humanas en células productoras de insulina y así tratar la diabetes, una de las epidemias sanitarias del siglo XXI.

Así lo propone un equipo del Naomi Berrie Diabetes Center de la Universidad de Columbia (EE.UU.) que demuestra, en principio, que un medicamento podría reprogramar las células dentro del organismo de una personas con diabetes para que éstas produjeran insulina.
Desde hace años se habla de la reprogramación celular como una de las vías para tratar la diabetes, explica el investigador Domenico Accili. "Pero hasta ahora no se había logrado fabricar una célula productora de insulina completamente funcional mediante la manipulación de un único gen", según el sitio abc.es
Según este experto, el hallazgo plantea la posibilidad de que las células "ineficaces" que hay una persona con diabetes tipo 1 pueden ser reemplazadas con facilidad a través de la reprogramación de las células ya existentes en el propio paciente, sin la necesidad así de un trasplante de nuevas células creadas a partir de células madre embrionarias o adultas.
Muchos equipos trabajan en la posibilidad de transformar las células de los pacientes, de cualquier tipo, en células productoras de insulina.

En la diabetes tipo 1 las células productoras de insulina del organismo son destruidas por el sistema inmune y desde hace décadas los investigadores han estado tratando de sustituirlas células por distintos mecanismos. Y, aunque hoy día ya se fabrican células productoras de insulina en el laboratorio a partir de células madre, todavía no tienen todas las funciones naturales de las células beta del páncreas.

Este mismo equipo ya había demostrado que las células gastrointestinales del ratón se pueden transformar en células productoras de insulina; el estudio actual, que se publica en Nature Communications, va un paso más lejos y demuestra que esta técnica también funciona en las células humanas.

Los investigadores de Columbia fueron capaces de "enseñar" a las células gastrointestinales humanas para que produjeran insulina en respuesta a circunstancias fisiológicas mediante la desactivación de los genes FOXO1.

Accili y Ryotaro Bouchi crearon primero un modelo de tejido del intestino humano con células madre pluripotentes humanas. A través de ingeniería genética desactivaron cualquier actividad del gen FOXO1 dentro de las células intestinales. Y después de siete días vieron que algunas de las células intestinales comenzaron a producir insulina y, lo más importante, sólo en respuesta a la glucosa.
Lea la nota: Páncreas biónico combate con eficacia la diabetes.

En su trabajo previo realizado en ratones los investigadores comprobaron que la insulina producida por las células intestinales se liberaba en el torrente sanguíneo, se comportaba como la insulina normal y era capaz de normalizar los niveles de glucosa en sangre en ratones diabéticos. Este trabajo, publicado en Nature Genetics ya ha sido reproducido por otro grupo de investigadores independiente, lo que confirma los resultados.
Lea la nota: Hallan posible tratamiento para la diabetes que ralentiza el consumo de insulina.
"Ahora podemos seguir adelante para tratar de hacer que este tratamiento sea una realidad", dice Accili. Y la clave, explica, será encontrar una fármaco capaz de pueda inhibir FOXO1 en las células gastrointestinales de los pacientes con diabetes.
Lea la nota: FDA aprueba insulina inhalada.
POR REDACCIóN BUENA VIDA /

Investigan regeneración de córnea con células madre

El limbo esclerocorneal es una parte de la córnea del ojo esencial para la visión. Si presenta insuficiencia -por razones congénitas o por lesiones, como quemaduras o cicatrices- el paciente puede perder la vista. Desde hace un tiempo se investiga la implantación de células madre de dicho limbo, capaces de regenerar esta región de la córnea, como potencial método terapéutico para la insuficiencia limbar o para la Enfermedad de Deficiencia Limbar.
En esta dirección se ha centrado una investigación realizada en Estados Unidos, cuyos resultados son sumamente esperanzadores. Un equipo de investigadores de varios centros, entre ellos el Massachusetts Eye and Ear/Schepens Eye Research Institute, han conseguido en concreto lo siguiente: han determinado cómo impulsar la regeneración de tejido de la córnea.

Por ahora, estas células se han utilizado para crear en laboratorio una estructura tridimensional similar a la de la retina humana, que podría llegar a sustituir el tejido retiniano enfermo o muerto para restaurar la visión; para rehacer la capa sensible a la luz de las retinas de ratones ciegos; e incluso para tratar a humanos con degeneración macular asociada a la edad (DMAE), una enfermedad que es la primera causa de ceguera en el mundo.

La clave estaría en una molécula llamada ABCB5, que actúa como marcador de las llamadas células madre limbares (sirve para saber dónde y cómo se encuentran esas células), que son las que ayudan a mantener y a regenerar el tejido de la córnea.

Esto es importante porque las “células madre limbares son muy raras”. Sin embargo, “el éxito de los trasplantes depende de ellas”, explica Bruce Ksander, uno de los autores de la investigación en un comunicado del Massachusetts Eye and Ear/Schepens Eye Research Institute.

Hasta ahora, se habían usado trasplantes de tejido o celulares para ayudar a la córnea dañada a regenerarse, pero no se había podido saber si realmente había células madre limbares en los injertos, o cuántas, por lo que los resultados obtenidos no habían sido consistentes.

En el presente estudio, los investigadores lograron usar anticuerpos para detectar la molécula ABCB5 y, de este modo, centrarse en las células madre limbares del tejido de donantes humanos fallecidos, que usaron para regenerar de forma anatómicamente correcta córneas humanas, totalmente funcionales, en ratones. Ksander explica que el hallazgo de la molécula ABCB5 hará, por tanto, “mucho más fácil restaurar la superficie de la córnea”.

Otros hallazgos
La molécula ABCB5 fue originalmente descubierta en el laboratorio de Markus Frank, del Hospital infantil de Boston, y de Natasha Frank, del Brigham and Women’s Hospital. Ahí se desarrolló también el modelo de ratón que ha permitido descubrir que la ABCB5 se produce en las células madre limbares (ya se sabía que está presente también en células precursoras de tejido de piel humana y del intestino); y se constató que esta molécula es necesaria para el mantenimiento y supervivencia de las células madre limbares, así como para la reparación y el desarrollo de la córnea.

De hecho, ratones que carecían del gen ABCB5 funcional perdieron sus poblaciones de células madre limbares y, en consecuencia, sus córneas no sanaron bien tras las lesiones. "La ABCB5 permite que las células madre del limbo sobrevivan y las protege de la apoptosis o muerte celular programada", explica Markus Frank. "El modelo de ratón nos ha permitido por primera vez entender el papel de esta molécula en el desarrollo normal (de la córnea), y debe ser muy importante para el campo de células madre en general", añade.

La presente investigación, publicada esta semana en Nature, también es uno de los primeros ejemplos conocidos de generación de tejido a partir de una célula madre derivada de adulto. Con este nuevo avance, el camino hacia una futura curación de la ceguera con células madre sigue adelante.

Referencia bibliográfica:
Bruce R. Ksander, Paraskevi E. Kolovou, Brian J. Wilson, Karim R. Saab, Qin Guo, Jie Ma, Sean P. McGuire, Meredith S. Gregory, William J. B. Vincent, Victor L. Perez, Fernando Cruz-Guilloty, Winston W. Y. Kao, Mindy K. Call, Budd A. Tucker, Qian Zhan, George F. Murphy, Kira L. Lathrop, Clemens Alt, Luke J. Mortensen, Charles P. Lin, James D. Zieske, Markus H. Frank, Natasha Y. Frank. ABCB5 is a limbal stem cell gene required for corneal development and repair. Nature (2014). DOI: 10.1038/nature13426.

Fuente: Tendencias 21 / Yaiza Martínez